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Abstract

Traditionally, operating systems have used monolithic network stack implementations: implementations
where the whole network stack executes in the kernel or (in microkernels) in a single, trusted, user level server.
Code maintenance issues, ease of debugging, need for simultaneous existence of multiple protocols, and secu-
rity benefit have argued for removing the networking implementation from kernel and dividing it into multiple
user level protection domains. Previous attempts to do so have failed to deliver adequate performance. Given
the advances made in both hardware (CPU, Memory, NIC) and micro-kernel design over the last decade, it is
now appropriate to re-evaluate how these re-factored implementations perform, and to examine the reasons for
earlier failures in greater detail.

Building on the primitives of the EROS microkernel, we have implemented two network subsystems: one
a conventional, user mode, monolithic design and the other a domain-factored user level networking stack
that restructures the network subsystem into several protection domains. We show that the restructuring main-
tains performance very close to that of the monolithic design, and that both designs compare favorably to a
conventional in-kernel implementation. We discuss the issues faced in engineering the domain-factored im-
plementation to achieve high performance, and present the quantitative evaluation of the resulting network
subsystems.

1 Introduction

Traditionally, network systems have been implemented as
monolithic subsystems that execute in the kernel or (in
microkernels) in a single, trusted, user level server. To
achieve performance, monolithic implementations sacri-
fice flexibility, maintainability, and security. Application
specific knowledge cannot easily be incorporated into the
network subsystem, debugging is more difficult, and the
network stack itself becomes either a single point of fail-
ure for the entire system (in-kernel) or a single point of
failure for the application (library approaches). Since net-
work stacks are large, complicated software systems, they
are intrinsically vulnerable to attack. It is therefore desir-
able to isolate both the operating system and the client ap-
plication from the security vulnerabilities of the network
subsystem.

Previous attempts to do so – most notably by Thekkath
et al. [TNML93] – have generated disappointing results,
suggesting that this design approach may be impracti-
cal. Unfortunately, Thekkath’s analysis does not evaluate
in detail the breakdown of time spent in various compo-
nents. As a result, it is difficult to separate the impacts of
three effects: user-level implementation, domain factor-
ing, and the poor performance of the Mach Microkernel.
Given the advances made in both hardware (CPU, Mem-

ory, NIC) and micro-kernel designs over the last decade,
it is now appropriate to re-evaluate how such re-factored
implementations perform, and to examine the reasons for
earlier failures in greater detail.

Since in-kernel network stacks are the most common im-
plementation approach, we use Linux [BC00] as a ref-
erence baseline for performance comparison. When a
domain structured implementation is compared directly
to an in-kernel implementation, the resulting comparison
can be difficult to understand. In particular, it is difficult
to know how to separate the performance consequences
of user level implementation from the performance con-
sequences of domain factoring. In order to support such
evaluation, we have implemented two network stacks de-
rived from a common code base: one monolithic, and the
other factored into multiple protection domains.

Our monolithic implementation is a conventional micro-
kernel network stack implemented as a user mode ap-
plication. The network stack (based on lwIP [Dun02])
includes the ethernet drivers. Client application(s) and
the network stack execute in separate protection domains.
This implementation is roughly comparable to the con-
ventional Linux implementation. Compromising the net-
work stack compromises all network client applications,
and also the entire kernel: most modern network interface



cards (NICs) implement physical DMA for performance
reasons which implies that the network driver can over-
write arbitrary kernel memory.

The domain factored implementation places the ethernet
driver in a separate protection domain, using a packet filter
[MRA87] to demultiplex packets to the appropriate net-
work stack. In this implementation, the network stack
itself has no privileged access to the hardware. The im-
pact of a compromised protocol stack is limited to a single
application. The complexity of the packet demultiplexer
(the ethernet driver) is primarily driven by the hardware
interface, and can be validated independent of the proto-
col stack. The primary added cost of this implementation
is the introduction of additional protection domain cross-
ing delays.

Thekkath et al. [TNML93] measured a conceptually simi-
lar design, showing performance degradations of 39% and
20% for 10 Mbit and 100 Mbit ethernet implementations
(see Table 1; we consider here only those results using
packet sizes that conform to the ethernet specification).
We show in the present work that this overhead can be
reduced to 13% using an unoptimized kernel implemen-
tation. We believe that an optimized kernel would bring
this performance to within 5%.

In this paper we present the design, implementation and
performance of our restructured network subsystem on a
modern, high-performance microkernel.

2 Objectives

Based on the above discussion regarding the limitations
faced by an in-kernel network stack and the constraints
needed to implement the domain factored design, we ar-
rived at a list of goals for the domain factored network
subsystem. In this section we discuss these goals and is-
sues involved.

Ideally a network subsystem should meet several simulta-
neous goals:

• Flexibility: It should support the co-existence of
multiple protocols that may be fine-tuned to exploit
application-specific knowledge.

• Resource Accountability: Clients should be re-
sponsible for providing all the resources necessary
to support their network activities. Buffers used to
store network data must therefore be supplied by
the client. This immunizes the stack from the po-
tential denial of resource attacks.

• Isolation: QoS Crosstalk should be avoided to pre-
vent clients from interfering with each other.

• Resilience: The network subsystem should be re-
silient to faults, both intentional or unintentional,
which might have crept into the implementation of
the network subsystem.

• Performance: In spite of isolating the network sub-
system in its own protection domain, the network
subsystem should deliver throughput and latency
comparable to a conventional implementation.

Meeting all of these goals simultaneously is challeng-
ing. Monolithic network subsystems combine all resource
management into a single protection domain, which com-
promises resource accountability and isolation. In-kernel
protocol stacks are a single point of failure that may im-
pact the entire kernel. User-mode monolithic stacks, as
have been built for several microkernels, remain a single
point of failure impacting set of applications that are using
the network. While this single point of failure cannot be
entirely eliminated (the packet filter is necessarily shared),
its size can be substantially reduced. This allows quality
assurance efforts to be focused more effectively.

When previous networking stacks have been split into
multiple protection domains, performance has suffered.
Protection domain boundaries usually imply data copies
from one address space to another. Both the copies them-
selves and the cross-domain control transfer operations
(IPCs) become a source of performance degradation. Be-
cause of these overheads, it is frequently asserted that pro-
tection carries intrinsic overhead.

Of the various user level network subsystems that have
been created by researchers, Thekkath’s work come clos-
est to our design. Thekkath proposed a user level im-
plementation using an in-kernel packet demultiplexer and
transport protocols as user level libraries [TNML93]. The
performance results from this work (Table 1) were disap-
pointing. We believe that this is primarily due to faults
of the Mach microkernel [GDFR90] that was used in
Thekkath’s experiments. The Mach microkernel interface
was not flexible enough to provide full resource account-
ability, its cache performance was inadequate to support
Thekkath’s design [CB93], and its interprocess commu-
nication performance was significantly lower than current
designs such as L4 [HHL+97] or EROS [SSF99].

Unfortunately, Thekkath’s analysis does not evaluate in
detail the time spent in various components. As a result,
it is difficult to separate the impacts of three effects: user-
level implementation, domain factoring, and the poor per-



Throughput(Mb/s)
System User Packet Size(bytes)

512 1024 2048 4096

Ethernet
Ultrix 4.2A 5.8 7.6 7.6 7.6

Mach 3.0/UX(mapped) 2.1 2.5 3.2 3.5
Thekkaths 4.3 4.6 4.8 5.0

DEC SRC AN1
Ultrix 4.2A 4.8 10.2 11.9 11.9
Thekkaths 6.7 8.1 9.4 11.9

Table 1: Performance results reported by Thekkath et al.
Table reproduced with permission of the author.

formance of the Mach Microkernel. In order to provide a
better understanding of these contributions, we have im-
plemented two protocol stacks: one is a monolithic user
mode implementation and the other is factored into mul-
tiple protection domains.

3 Monolithic Network Subsystem

Our monolithic network subsystem is a conventional mi-
crokernel network stack implemented at user level. The
protocol suite is based on lwIP, which is a lightweight im-
plementation of IP, UDP and TCP designed for low mem-
ory embedded systems. We chose lwIP as our initial pro-
tocol stack because it is simple and highly portable. Our
ethernet drivers were created by adapting existing Linux
ethernet drivers to operate at user level. Client applica-
tions execute in a protection domain separate from the
network stack.

Our initial objective in creating the monolithic stack was
ease of implementation. Since the stack is monolithic,
simultaneous existence of multiple protocol stacks is im-
possible, and it is a single point of failure in the system.
Resources cannot be accounted for as network buffers are
allocated from a private stack pool instead of the clients
being charged for them. Lack of resource accountability
and multiplexing at a high level (Session layer) [Ten01]
imply that there exists crosstalk between the clients using
the stack. However, this implementation serves as a useful
reference for comparison against other monolithic imple-
mentations. It also shares most of its code with the domain
structured implementation (Section 4), allowing an “ap-
ples to apples” comparison between the two approaches.

The monolithic stack has two “helper” processes. The
IRQ helper notifies the stack of newly arrived interrupts.
A timeout helper is used to notify the stack that a time-
out has occurred (e.g. TCP timeouts). The helpers are
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Figure 1: The EROS monolithic network subsystem

highly specialized and therefore small (<128 KB). The
EROS kernel transparently allocates such small processes
to small address spaces [Lie95] to reduce context switch
overheads. As shown in Fig 1, the stack copies network
data to/from the hardware DMA buffers to/from its buffer
pool during network processing. Data flow across the
client-stack process boundary is accomplished by a copy.

The performance of this implementation is comparable to
the native Linux network stack, and is evaluated in Sec-
tion 5.

4 Factored Network Subsystem

Like the monolithic implementation, the factored EROS
network implementation is based on lwIP and executes in
user mode. We present the design and implementation
of the factored network subsystem and show how the de-
signed goals are met.

4.1 Design

The factored version of the network subsystem has been
structured to achieve all the design goals described earlier.
We start by dividing the network subsystem into three in-
dependent protection domains namely, enet - consists of
the ethernet drivers and a packet demultiplexer, network
stack - consists of the various protocol implementations
like IP, TCP, UDP, ICMP and ARP, and the network com-
munication enabled client application. The division of the



network subsystem in this fashion is mostly at points of
data multiplexing. We have effectively pushed the point
of multiplexing down, adjacent to the network interface
(into the enet layer). This is an accepted practice to mini-
mize QoS crosstalk [Ten01].

Factoring makes it feasible to isolate attacks on the net-
work subsystem and restrict the damage to the domain
of attack, thus compartmentalizing the vulnerabilities of
each domain. The result is a fault resilient, layered de-
fense mechanism. Separating the enet layer from the net-
work stack adds to the modularity of the design. This en-
ables a client application to spawn a new stack in the event
of a failure of the running stack. This also helps achieve
flexibility as factoring supports simultaneous existence of
multiple protocols.

4.1.1 Client-provided shared memory

Monolithic network subsystems use a centralized buffer
pool. Network data meant for a client is buffered using
buffers from this pool. So it is possible for a client to throt-
tle the network bandwidth of another client using the stack
without explicit resource management policies [DB96].

To accomplish proper resource accountability, it is nec-
essary for the client to provide the store for the network
data it requests/transmits. In the factored network sub-
system, the client provides shared memory regions which
are mapped three-way into the enet, the network stack and
the client itself. This shared memory is used as a network
buffer store by the stack for that particular client.
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Figure 2: Client provided shared memory regions

The client is responsible for supplying four shared buffer

regions. They are:

• Transmit data region: Client specific transmit data
is stored in buffers allocated from this region.

• Transmit header region: Client specific transmit
protocol header is stored in buffers allocated from
this region.

• Receive data region: Client specific received data is
stored in buffers allocated from this region.

• Receive header region: Client specific received pro-
tocol header is stored in buffers allocated from this
region.

The client has (read,write) permissions to only two of
these regions - the transmit data region and the receive
data region. The other two regions - the receive header
region and the transmit header region are read only for
the client. All regions are mapped into the enet and the
network stack, with (read, write) permissions. (Figure 2).

The data regions are used as a store to allocate network
buffers which contain client-specific data. The header re-
gions are used as a store to allocate network buffers which
contain protocol headers. A malicious client cannot ma-
nipulate or corrupt protocol headers as it has only read
permissions to the buffers containing the header. Hence,
it cannot influence the protocol state machine of the stack.

4.1.2 Scatter-Gather

Additional process boundaries add an extra cost to the
data movement across these boundaries. We use shared
memory to avoid copying across protection domains.
Scatter-gather is used to enable copy avoidance. We de-
scribe this mechanism in detail for inbound and outbound
network packets.

For outbound network traffic, the client acquires an un-
used network buffer from the transmit data region and
places the data to be transmitted in it. The stack uses a
free buffer in transmit header region to write the protocol
headers and then chains these two buffers together into a
single buffer chain. The enet uses the transmit descriptor
to this buffer chain to transmit data.

The case of inbound network traffic is exactly inverse.
The enet “scatters” the network packet into client specific
data, storing it into buffers from the receive data region,
and into protocol headers storing it into buffers from re-
ceive header region.



Since the buffers used for storing data come from the
client, eager demultiplexing [DB96] is necessary at the
enet level. As mentioned earlier, enet has a packet filter,
which is used to identify the client to which the incom-
ing data belongs. If the enet is unable to allocate network
buffers from either of the two receive regions due to ex-
haustion, we simply drop the packet as is done in lazy
receiver processing. The justification behind this policy is
that ethernet does not provide guaranteed packet delivery
in any case. If the client cannot keep up with the pace of
incoming data, the ethernet driver is free to discard pack-
ets.

Resource accountability using the shared memory design
presented can avert a potential denial of resource attack
in which a rogue application can request network data
and then refuse to dequeue its packets. Refusal to do
so deprives other needy applications of precious network
buffers. This attack is no longer feasible in the factored
network subsystem as the buffers for the packets are al-
located from the client’s store. The client’s refusal to de-
queue the packets will only lead to client’s buffer pool
exhaustion. Once exhausted, the packets meant for that
particular client are dropped by the enet. No other client
can be affected due to the mis-behavior of the rogue client.

One advantage of this resource accounted shared mem-
ory design besides security is the scatter-gather mecha-
nism which ensures a zero-copy, and hence helps in per-
formance enhancement. Banga et al. [BDM99] only ac-
count for the execution time spent in the network stack on
behalf of the client. With the factored network subsystem
design, it is possible to extend the notion of network re-
source to include the buffers used for packet transfer also.
This ensures that a client application is not able to deprive
other clients of network buffer resources as in a central-
ized buffer pool design. This, in combination with the
layered structure of the factored network subsystem, pre-
vents the QoS crosstalk as the multiplexing is pushed fur-
ther down in the network subsystem and the effect of one
client on another is minimized.

4.2 Implementation

We have modified lwIP keeping in mind the design
goals discussed earlier in Section 2. lwIP uses a stack-
centralized pool of network buffers. We modified lwIP to
use shared memory buffers. Enet includes a packet fil-
ter (adapted from the LRP implementation [DB96] which
is used to eagerly demultiplex packets to the appropriate
receiving network stack.

We now describe the components which are handled dif-

ferently when compared to existing user level network im-
plementations.

4.2.1 Shared Memory

The increased number of process boundary crossings in a
factored design results in an increase in latency incurred
during the processing. The main source of this latency is
the cost of cross-space control transfers and cross-space
data copies. To avoid these expensive data copies, shared
memory is employed. In most existing implementations,
the shared memory for the network buffers is a global en-
tity allocated by some component of the network stack or
is a memory pinned resource. In our factored design, the
client provides a source of storage that is used to allocate
a shared memory region that is used exclusively on behalf
of that client. We list the steps involved in the creation of
a shared buffer:

1. The client grants a storage allocator to the stack.
The client can rescind this storage, but has no ac-
cess to pages that are allocated using this allocator.

2. The stack allocates the four shared buffer regions
that we described earlier using the storage allocator.

3. The buffers in the transmit regions are reserved for
transmission exclusively and the buffers in the re-
ceive region for reception exclusively. The stack
‘formats’ these pages as ring buffers (described in
the next section).

4. The stack requests the enet to map read/write ver-
sion of all these pages into its address space.

5. The stack requests the client to map read/write ver-
sion of the pages of the transmit, receive data region
into its address space. Note that the client has only
read access to the buffers in the header regions.

The mapping of a client-specific shared memory region
into the various domains is now complete. This mapping
is done during setup time when the client registers with
the stack and the enet domains. The header region buffers
(Figure 2) are used for buffering protocol headers and the
data region buffers for client specific data. In the case
of transmission, the client places data into the transmit
data region buffers. The stack prepares protocol headers
in transmit header region buffers and links the respective
buffers together. This buffer chain is passed off to enet
for transmission. The scenario of reception is exactly the
inverse. A rogue client can at most mangle the buffers
in the data region but has no access to the buffers in the
header region. Hence, in no way can affect the stack or
the enet domains.



4.2.2 Ring Buffers

We now describe the data structure used to hold the net-
work buffers themselves. For ease of presentation, we
only discuss the scenario during reception. The case of
transmission is exactly the inverse.

As already described, buffers for client data are allocated
from the data regions, while the protocol header is allo-
cated from header regions. We initially format (Step 2 in
the creation of the shared memory region) the four shared
buffer regions into uniformly sized ring buffers. Each
buffer consists of a buffer header (not to be confused with
the packet header) and space which stores the buffer pay-
load (network headers and network data reside here). The
buffer header stores meta-data, including the status of the
particular buffer, the size of payload stored in the buffer
and the pointer to the next buffer (See figure 3).

Buffer Linkages

(Incoming data spans these buffers)

Header

Data

Data
Data

Payload Size
Status

Next Buffer

PAYLOAD

A Single buffer

Data Region

Header Region

Figure 3: Receive ring buffers. The incoming data packet
is scattered into header and client data and
stored into appropriate ring buffers by the enet
packet filter.

When a packet arrives for a particular client, the enet
packet filter splits the packet into buffers allocated from
two different ring buffers. Buffers for the packet data are
allocated from the receive data region ring buffer. Buffers
for the protocol headers are allocated from the receive
header region ring buffers. Traditionally, the functionality
of the packet filters in the ethernet layer is to demultiplex
the incoming packet to the recipient stack [EK92]. We

have extended the packet filter to include placement of the
inbound packet into the appropriate client and stack data
and header ring buffers. Packets can appear on the net-
work interface out of order and it is up to the higher layer
protocols to re-order them. Buffer pointers can be appro-
priately redirected to make the data appear “contiguous”.

The ring buffer mechanism employed is similar to the
hardware DMA ring buffer mechanism used by most net-
work interfaces. A direct consequence of using ring
buffers for the network packet is that allocation and deal-
location occur in strictly increasing ring sequence and
hence their time complexity is O(1). A network buffer list
implementation also achieves O(1) allocation and deallo-
cation. But it is slower, as it needs explicit mutexes to
read/write the buffers.

4.2.3 Inter Domain Communication

We have extensively used the EROS IPC mechanisms,
specifically call, return and retry. Equivalents to CALL

and RETURN are commonly available in most micro ker-
nels. The RETRY operation is specific to EROS. Clients
queued using RETRY do not block other requests, and their
reactivation honors the scheduling policy of the operating
system.
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EROS uses a synchronous IPC mechanism. Since calls
are blocking, upcalls are prohibited as they can lead to
denial of service attacks. If the enet makes an upcall to



the stack and the stack fails to return, the enet remains
waiting indefinitely. Further upcalls can also lead to a po-
tential deadlock where the stack and the enet are attempt-
ing to call each other simultaneously. So we introduce a
few domains (Helpers) which have highly specific roles
(Figure 4). They are:

• IRQ helper: Notifies the enet domain of newly ar-
rived interrupts from the network interface. This
process runs in an infinite loop waiting for an IRQ
and on an IRQ signal turns around calls the enet
layer.

• Rx helper: Notifies the stack that the enet has re-
ceived data. This process sits in an infinite loop
calling the stack and the enet in turns. The enet is-
sues a RETRY to block Rx until data is available.
The Rx helper relieves the network stack of having
to block for I/O data so that client applications can
avail the stack’s services promptly.

• Timeout Agent: Notifies the stack of timeouts (e.g
TCP timeouts). This process runs in an infinite loop
calling the stack after regular time intervals (say
100 msec).

Separating the protocol processing, packet demultiplexing
and applications into different threads has a performance
disadvantage. By doing so, we have effectively replaced
what would have been function calls in a monolithic de-
sign with more expensive IPC calls. Adding the helpers
could potentially degrade our performance further.

Decreasing the latency in processing can be pursued by
reducing the number of IPC invocations and the context
switch time. We carry out a number of optimizations to
this effect.

• The Helpers are specialized and small (<128KB).
The EROS kernel transparently allocates such small
process to small address spaces. The advantage is
that unlike typical address space switches we can
avoid TLB flush while switching to/from a small
address space.

• “Amortizing” the IPC invocations that are needed
so that we can reduce the per packet address space
switches. We describe this in the next subsection.

4.2.4 Ping-Pong design

In the receiving data path we typically incur the follow-
ing address space switches triggered by IPC : IRQ helper

→ enet (CALL enet IRQ notification), enet → IRQ helper,
enet → Rx Helper (RETRY Rx Helper to notify the stack),
Rx Helper → stack (CALL stack packet reception Notifi-
cation), stack → Rx Helper (RETURN), Rx Helper → enet
(CALL) (Figure 5). This is quite a high overload for a sin-
gle packet. High speed NICs can generate thousands of
interrupts per second. The CPU cannot keep up with this
rate of interrupt generation. This can lead to live-lock. In
this state, the system spends all of its resources process-
ing incoming network packets, only to discard them later
because no CPU time is left to service the receiving appli-
cation programs.
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Figure 5: The various IPC invocations in the Rx data path.
The numbers show the sequence of events.

Linux uses the NAPI poll approach [SO01] where inter-
rupts are disabled and polling is scheduled for a certain
time interval before re-enabling the interrupts . We use a
similar flow-aware solution to tackle this. The rationale is
that if the enet, stack, Rx Helper are already doing their
respective tasks no IPC invocations are necessary for no-
tification. Accordingly, the enet and stack processes ping-
pong between receiving and transmitting. The enet alter-
nates between reading a network packet from the hard-
ware Rx ring buffer and writing a packet into the hard-
ware Tx ring buffer. The stack alternates between reading
data off the shared memory Rx ring buffers and writing
data into the shared memory Tx ring buffers. The state of
maximum throughput is achieved when both the stack and
the enet are ping-ponging simultaneously between trans-
mitting and receiving. In this state no IPC invocations are
issued and the stack processes whatever the enet receives
and the enet transmits the data on the transmit ring buffer
named by the transmit descriptors. The only overhead in
the data path is the context switch time between the stack
and the enet(the IPC overhead is absent). The network
interrupts are disabled until the enet stops ping-ponging.



5 Evaluation

This section presents both a quantitative evaluation of the
various implementations and a qualitative evaluation of
the resilience achieved in the factored implementation.

5.1 Performance

Performance measurements were carried out using two
900 MHz Pentium IIIs with 256 MB RAM and 33
MHz PCI bus, each equipped with a 3com 3C905C-TX
(100Mbps) ethernet card and a NetGear 602T - BCM5701
(1000Mbps) gigabit card, interconnected by standard Cat-
5e patch cables. The linux drivers for these NICs were
ported to EROS. To fit our design we removed the NAPI
poll interrupt mitigation approach to mitigate interrupts
that linux uses in its gigabit driver.

Due to unrelated research that is ongoing in our labora-
tory, the version of EROS reported here does not provide
an optimized IPC implementation. On the kernel used, a
typical EROS round trip IPC takes 2268 cycles ( 2.40 µs
on our test machine). For comparison, the optimized im-
plementation takes approximately 500 cycles per round
trip ( 0.53µs). Transfers using smaller packet sizes are
significantly influenced by IPC performance in all imple-
mentations, and we expect they would improve when us-
ing an optimized kernel.

We used the standard network tests ping and ttcp for
benchmarking, considering the linux 2.4 network stack as
a touchstone. We rate the performance of the refactored
network subsystem and a monolithic version of the net-
work subsystem (running lwIP) on EROS. lwIP running
on linux is not listed here because it is severely crippled,
as it uses a tuntap interface over linux.

5.1.1 Ping

The ping time between two hosts is a good measure of
the latency. We measured the round trip latency time of
ICMP echo requests with size varying from 64 bytes to
9000 bytes (fig 6).

Linux and the EROS-monolithic stack have comparable
ping latencies throughout. EROS-monolithic is slightly
slower because it uses the services of an IRQ notifier be-
tween the monolithic subsystem and the kernel. This is
primarily an IPC-related delay. The EROS-factored im-
plementation has a higher latency due to the increased
number of address space switches as a result of the higher
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number of processes (primarily the receive helper).

5.1.2 ttcp

Ttcp is a benchmark that measures the time taken to trans-
mit and receive data between two systems using the UDP
or TCP protocols. We ran ttcp-r for different sizes of
socket buffers. We set up a ttcp transmitter on a redhat
2.4 linux machine and the receiver was on the candidate
to be benchmarked. The maximum wire capacity on a 100
Mbps ethernet is 12.5 MBps and on a 1000Mbps Gigabit
is 125MBps.
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Linux and the EROS-monolithic stack perform compara-
bly in this test too. The Linux gigabit stack is slightly
faster because of the NAPI interrupt mitigation in their
driver. The EROS gigabit driver does not use this tech-
nique. Also the EROS-monolithic uses the services of an
IRQ notifier between the monolithic subsystem and the
kernel. As the socket buffer size decreases linux pays an
increasing performance penalty due to the higher num-
ber of data copies from kernel to user space and back re-
quired for the same size of data to be transferred. EROS-
monolithic incurs a similar cost copying the data from the
user-mode network stack to the application using IPC.
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Figure 8 and Figure 9 show the IRQs serviced and the user
cycles consumed respectively during a typical ttcp run. As
seen from Figure 8, the factored network subsytem takes
more number of interrupts than the monolithic version.
This is due to the fact that in the monolithic stack, the
protocol processing occurs in the context of the interrupt
service routine (ISR). During protocol processing, pack-
ets that arrive do not flag interrupts and are serviced in
the same context subsequently. In the factored network
subsystem, the protocol processing and ISR occur in dif-
ferent processes viz. the stack and the enet. On packet
arrival, the enet signals the stack to carry out packet pro-
cessing and itself becomes available to receive new inter-
rupts. The higher interrupt rate of the factored subsystem
results in higher processor usage as seen from the user
cycles figure (Figure 9).

The factored network subsystem achieves 87% perfor-
mance of the monolithic linux stack (worst case) and up to
89% performance of the monolithic EROS stack. While
the EROS-factored implementation avoids data copy over-
head using shared memory, it incurs a larger number
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Figure 9: User cycles per 10,000 packets consumed dur-
ing ttcp. Data for GigE(9000) for socketbuf
lengths less than 8192 have been omitted to
avoid graph compression. Measurements for
smaller socket buffer sizes for the Gigabit (9000
mtu) case are limited by Linux transmit perfor-
mance.

of context switches for control transfer purposes. The
RETRY operation in particular is excessively expensive.

Chen et al. [CB93] have argued that cache performance
is an insurmountable obstacle to microkernel performance
in general. While this claim was convincingly rebutted by
Liedtke [Lie96], Blackwell has pointed out that instruc-
tion cache locality plays a significant role in small packet
processing [Bla96], and Druschel’s work on Fbufs [DP93]
was motivated in part by cache-based domain crossing
costs in the x-kernel. Mossberger et al. identify a num-
ber of important cache-related optimizations for reducing
network processing latency [MPBO96].

Figure 10 compares instruction and data cache misses in
the monolithic and factored EROS implementations. The
results suggest that there is a relationship between instruc-
tion cache traffic and performance, but it is not a simple
relationship. In some cases, the instruction cache costs
are noticeably higher on the monolithic network stack,
even though the monolithic implementation has slightly
better performance in those cases. Note also that instruc-
tion cache effects dominate data cache effects overall by
three decimal orders of magnitude in conventional ether-
net frames. This is a pleasing result, both because instruc-
tion cache tuning is relatively easier to accomplish and
because we know that the lwIP implementation objective
was simplicity rather than performance. More detailed in-
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Figure 10: User instruction and data cache misses per
10,000 packets during ttcp. The second graph
is identical to the first with selected points re-
moved to eliminate compressed display.

vestigation of these results is indicated.

We believe that higher performance would be achieved
using the optimized IPC. Further, we note that lwIP was
developed for low memory usage rather than for high per-
formance, which suggests that further performance en-
hancements are possible in the protocol stack itself. How-
ever, the key lesson in these figures is that the performance
throughout is directly proportional to the interrupt service
rate. Our current implementation does not poll the net-
work at high packet rate. Performance is therefore limited
by the interrupt latency.

Microbenchmarks provide reliable measurement of low-
level performance, but often fail to accurately predict the
behavior of the overall system. End to end performance
is heavily influenced by issues of locality, and domain
factoring raises the risk of defeating these performance
gains. Given this, the microbenchmark results reported
here must be interpreted with caution, and may not prove
to be definitive.

5.2 Resilience

A monolithic network stack suffers from several short-
comings that impact resilience:

1. Because it is monolithic, the network stack is a sin-
gle point of failure for all applications using the net-
work. In an in-kernel implementation, bugs in the
network stack manifest as failures of the system as
a whole.

2. Achieving precise per-client resource accountabil-
ity is exceedingly difficult.

3. The amount of robustness-critical code (in lines) is
large, which increases the intrinsic vulnerability of
the network stack.

4. There are no well-defined internal interface bound-
aries at which fail-fast and recover-fast disciplines
can naturally be applied.

Improvements on the first three criteria can be measured
directly using straightforward metrics. The last requires
performance evaluation.

The factored network stack presented in Section 4 is both
a user-mode stack and a per-client stack. Being user-
mode, it is unable to crash the system as a whole. Being
per-client, failures in one stack do not impact the behavior
of other client applications.



Several previous network stacks have provided CPU re-
source accountability and used eager demultiplexing for
purposes of maintaining quality of service [Ten01, DB96],
The per-client network stack described here runs from a
client-supplied scheduling class, ensuring that CPU allo-
cation for network processing purposes observes the same
scheduling policy as all other processing that occurs on
behalf of an application. Novel to the factored design
presented here is that storage resources are also allocated
using per-client resources: each client provides a storage
source from which its buffers are allocated.

The monolithic EROS stack described in Section 3 in-
cludes a total of 10,803 critical lines of code. Of these,
5,217 are the ethernet driver, and 5586 are the lwIP im-
plementation. Any failure at any point in this code poten-
tially compromises all networking applications. In con-
trast, the factored implementation of Section 4 places the
lwIP implementation outside of the trusted code base, re-
ducing the amount of critical code to 5,612 lines (the eth-
ernet driver), leaving an untrusted lwIP implementation
of 6,297 lines. All of these lines are in addition to the
EROS kernel itself, which is approximately 15,985 lines
of code. In contrast, the Mach kernel used in Thekkath’s
measurements was over 100,000 lines of code excluding
the network stack and drivers. While precise sizes for
Thekkath’s stack are not available, the total critical com-
ponent size of the stack described here are less than 16%
of the earlier effort.

The fault recovery strategy for the factored network stack
is first to fail eagerly. Failure may be signalled by var-
ious sorts of anomoly and intrusion detectors; choosing
a specific mechanism for detection is beyond the scope
of this paper. The interested reader may wish to exam-
ine [CPM+98] and its citations. Once a failure has been
recognized, the relevant network subsystem is involuntar-
ily halted and a new network subsystem is instantiated to
replace it. Running on a 931Mhz Pentium-III, instanti-
ation of a new network stack is accomplished in 387ms.
This number is severely impacted by the currently unop-
timized IPC implementation. Based on earlier measure-
ments, a factor of two improvement would be expected in
a production-suitable kernel.

5.3 Lessons for Microkernel Design

One lesson to draw from the factored network stack is the
need for non-blocking notification mechanisms in micro-
kernel architectures. The RETRY system call was orig-
inally introduced as a way to work around the absence
of such a mechanism in the EROS design. It provides a
means to enqueue a client in such a way that the client will

re-execute its last CALL when unblocked. This, coupled
with the use of worker threads, can be used to simulate
non-blocking notification. The RETRY operation design
attempted to satisfy a philosophy, shared with Liedtke
[Lie93] and Ford [FL94], that IPC operations should be
thread migrating, blocking, and usually non-preemptive.

However, the end result is cumbersome to use, difficult
for the programmer to understand, and introduces unnec-
essary context switches. Future derivatives of the EROS
kernel will incorporate a non-blocking notification mech-
anism whose behavior is similar to that of hardware in-
terrupts. In contrast to UNIX signals, delivery of noti-
fications will be deferred until the recipient process next
enters a “ready to receive” state, and their semantics and
prioritization will be entirely determined by the recipient.

6 Related Work

A great deal of of research has gone into building user
level network subsystems. Several of them have re-
lied on specialized hardware support in which network
buffer pools on the card can be reserved by applications.
HP developed such a mechanism for the Jetstream LAN
[EWL+94] where applications could reserve buffer pools
on the AfterBurner [DWB+93] card. The data on arrival
was demultiplexed to the correct application pool. Unet
[vEBBV95] implementation for SBA 200 modified the
firmware to add a new Unet compatible interface.

The factoring of the subsystem into layers is an exten-
sion of the design proposed by Thekkath,U-net and Mogul
[MRA87] who have all argued for separating the inter-
face driver from the protocol stack. They have also exten-
sively used shared memory between these layers to miti-
gate copy costs.

U-net follows a similar approach for a parallel and dis-
tributed computing architecture. Although Unet showed
promising results performance-wise, it failed to address
certain vulnerability issues. The shared memory buffers
allocated to buffer network data were typically pinned to
physical memory. This made them a scarce resource, thus
making it vulnerable to possible denial of resource at-
tacks. Using shared memory in network subsystem has
been widely used concept. Druschel’s work on Fbufs
[DP93] uses the notion of transferrable buffers to re-
duce domain crossing overheads in the x-kernel. IOLite
[PDZ99] uses shared memory and ACLs to ensure a pro-
tected unified buffering scheme. Exokernel [EKO95],
which supports application level resource management
scheme also refers to the design of sharing the network



buffers similar to the one suggested by Druschel [PDP94].
But none of the above mentioned works talk about the is-
sues of making the applications accountable for the buffer
they use. The EROS factored implementation requires
that clients supply the resource for all buffers used on
their behalf. It is this concept of resource accountabil-
ity that makes EROS-factored design different from the
above mentioned works.

We use eager demultiplexing and lazy processing in our
design. Demultiplexing immediately at the network in-
terface is necessary for purposes of QoS [Ten01, DB96]
and for user-level implementation of network subsystems.
This also accomplishes proper time resource accountabil-
ity. In our scheme, space resource accounting is also ac-
complished. If the client is devoid of space for the net-
work data, we simply drop the packet i.e. the stack does
not waste time in protocol processing. The reason for this
policy is that if the client is not able to keep up with the
pace of incoming data, there is no need for the stack and
driver to do that on behalf of the client.

We introduce a novel invocation pattern between the vari-
ous domains in the network to improve the speed of the
stack, by amortizing the cost in the invocation and in-
terrupt servicing. Previous mechanisms [KMY01, SO01]
use interrupt mitigation or interrupt coalescing. At high
speeds, the processor cannot keep up with 1 interrupt per
packet. The interrupt mitigation schemes work by dis-
abling interrupts when there is work and re-enabling them
when there is none. These schemes are application in-
considerate and need changes to the driver. Soft timers
[AD00, ST93] allow efficient scheduling of software
events. These can avoid interrupts and reduce context
switches associated with network processing. But these
are operating system facilities and hence need changes to
the kernel. We use a scheme similar to the mitigation
scheme where the driver ping-pongs between transmis-
sion and reception. Interrupts are turned off during this
period of activity. When activity ceases, interrupts are
re-enabled. We thus amortize the cost of interrupts and
domain switches incurred in the data path.

The “fail fast” concept has recently been rediscovered by
Candea et al. [CF03], but was well known to earlier prac-
titioners [Gra86, SS83]. Fail-fast (or “crash-only,” as Can-
dea et al. call it) techniques were used in production in the
KeyKOS operating system (the predecessor to EROS) by
1983 [Har85], and in the KeyTXF transaction processing
system by 1987. The notion has been an underlying de-
sign pattern in EROS since 1990.
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8 Conclusion

We have presented the design and implementation of
a domain factored Network Subsystem which provides
a defensible multi-layered network subsystem with mi-
crobenchmark performance comparable to the existing in-
kernel monolithic networking subsystem.

Although a great deal of research has gone into improv-
ing the network subsystem, we are aware of no prior work
attempting to address both performance and security to-
gether, nor work that has successfully factored a network
stack into multiple protection domains. In this work, we
have demonstrated that such factoring is practical. Our
results show that speed need not be sacrificed in any sub-
stantial measure to attain security. This suggests that the
much-promoted “cost of protection” have been greatly
overestimated in previous work. The cache performance
results presented here suggest that the cache effects result-
ing from factoring are more complex than had previously
been assumed.

One key to the performance we have achieved is integrat-
ing the packet filter concept with scatter-gather technol-
ogy. The EROS-factored packet filter simultaneously de-
multiplexes the packets to the appropriate recipient and
divides the packets into component parts that are deliv-
ered into the appropriate memory region.

When combined with appropriate use of CPU schedul-
ing, the EROS-factored networking stack satisfies all of



the goals identified in Section 2. Fault resilience, proto-
col flexibility, resource accountability, and performance
isolation are achieved without unduly compromising per-
formance. This is possible in part because the EROS ker-
nel interface exposes low-level resources using a protec-
tion model that allows us to correctly align the protection
mechanisms with the interests of the various parties. In
particular, the ability to separate authority to deallocate
storage from authority to read that storage is essential to
maintaining the trust and resource relationships between
the different components.
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