
Mach: A System Software Kernel

Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi,
Robert Baron, Alessandro Forin, David Golub, Michael Jones

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

for a 16-bit uniprocessor. Under the weight of changingAbstract
needs and technology, Unix has been modified to provide a
staggering number of different mechanisms for managing ob-The Mach operating system can be used as a system

software kernel which can support a variety of operating jects and resources. In addition to pipes, Unix versions now
system environments. Key elements of the Mach design support facilities such as System V streams, 4.2BSD sockets,
which allow it to efficiently support system software include pty’s, various forms of semaphores, shared memory and aintegrated virtual memory management and interprocess com-

mind-boggling array of ioctl operations on special files andmunication, multiple threads of control within one address
devices. The result has been scores of additional system callsspace, support for transparent system trap callout and an ob-

ject programming facility integrated with the Mach IPC and options with less than uniform access to different
mechanisms. Mach is currently available both from CMU resources within a single Unix system and within a network of
and commercially on a wide range of uniprocessor and mul-

Unix machines.tiprocessor hardware.
The Mach operating system kernel developed at Carnegie

Mellon University [1] was designed to operate on both1. Introduction
uniprocessors and multiprocessors and to provide a small set

The operating system software problems faced by manufac-
of basic facilities which would permit a wide variety of

turers are often magnified by a need for compatibility be-
operating system environments to be efficiently implemented.

tween the old and the new:
Mach incorporates in one system a number of key facilities

• old and new CPU architectures (e.g., CISC and which distinguish it from earlier virtual machine systems (e.g.
RISC), IBM VM [5]) as well as message-based OS kernels (e.g.

THOTH [3], V [4], RIG [2] and Accent [9]). These facilities• old and new memory architectures (e.g.,
allow the efficient implementation of system functions out-uniprocessor and multiprocessor),
side the operating system kernel and support for binary com-

• old and new I/O organizations (e.g., buses and patibility with existing operating system environments.
networks) and

2. System Software Support• proprietary OS environments developed during
The key features of Mach in its role as a system softwarethe 1960’s and 1970’s in addition to new OS

kernel are:environments demanded by customers (e.g.,
1Unix and OS/2). • support for multiple threads of control within a

single address space,Moreover, operating system environments have become in-
creasingly large, complex and expensive to maintain. Unix

• an extensible and secure interprocess com-[11], for example, was once a small, simple operating system
munication facility (IPC) [12],

• architecture independent virtual memory manage-
1 ment (VM) [10],UNIX is a trademark of AT&T Bell Laboratories

• integrated IPC/VM support, including: copy-on-
write message passing, copy-on-reference net-This research was sponsored by the Defense Advanced Research Projects
work communication and extensible memory ob-Agency (DOD), ARPA Order No. 4864, monitored by the Space and Naval

Warfare Systems Command under contract N00039-85-C-1034. jects,

• transparent shared libraries to supply binary com-
patibility and

• an object programming facility integrated with
transparent network communication.

2.1. Mach threads and interprocess communication 2.3. Transparent Shared Libraries
A thread in Mach is a CPU flow of control executing within Mach provides the notion of a transparent shared library. A

an address space or task. The ability of Mach to support transparent shared library is a code library which can be
multiple threads of control within a single address space is loaded in the address space of a program without its
critical to both multiprocessor support and management of knowledge, which can intercept system calls made by that
concurrent I/O by programs acting as system servers (e.g. a program. Transparent shared libraries are loaded by a parent
file system server). process and transparently inherited by its child processes

using Mach’s flexible virtual memory management facilities.The Mach interprocess communication facility is defined in
The parent process that established this shared library canterms of ports and messages and provides both location in-
then tell the Mach kernel to redirect system call traps from thedependence, security and data type tagging. A port is a
child into the shared library in the address space of that child.protected kernel object into which messages may be placed by
This allows any embedded system call traps in a programprograms and from which messages may be removed. Access
binary to be interpreted outside the kernel and either handledto a port is granted by receiving a message containing a port
directly or converted into a message to be sent to a systemcapability (to either send or receive).
server. There is an override facility that allows the trans-Ports are used by tasks to represent services or data struc-
parent library code to redirect a call to the kernel if necessary,tures. For example a window manager running under Mach
to simplify development and debugging of the transparentcould use a port to represent a window on a bitmap display.
library itself.Operations on that window would be requested by a client

The Mach transparent shared library facility can be used fortask by sending a message to the port representing that win-
a variety of purposes, such as:dow. The window manager task then would receive that

message and handle the request. Ports used in this way can be • binary compatibility with non-Mach OS environ-
thought of as though they were capabilities to objects in an ments,
object-oriented system [6]. The act of sending a message (and

• support for multiple OS environments (e.g. Unixperhaps receiving a reply) corresponds to a cross-domain pro-
4.3, Unix V.4),cedure call in a capability based system such as Hydra [13] or

StarOS [7]. • debugging and monitoring and

2.2. Integrated IPC and VM • network redirection of OS traps.
Interprocess communication and memory management in

2.4. Mach ObjectsMach are tightly integrated. Memory management techniques
The development of system software on Mach is aided by a(such as copy-on-write) are employed whenever large

C-based object-oriented programming package which hasamounts of data are sent in a message from one program to
been integrated with the Mach interprocess communicationanother. This allows the transmission of megabytes of data at
facility. This package allows:very low cost with no actual data copying. Mach virtual

• dynamic class/method specification,memory objects are represented as ports. On a page fault the
kernel sends a message to the backing storage port of a • class/superclass hierarchy,
memory object to get the data contained in the faulted page.

• multiple inheritance through delegation,This tight coupling of IPC and VM allows user-state system
servers to provide data to client programs in a variety of • automatic remote delegation (through IPC),
ways:

• user-specifiable method lookup to implement• Data can be sent copy-on-write in a message or
other forms of inheritance,

• data can be represented by a memory object for
• automatic dispatching of method invocations towhich the system server acts as the external

multiple threads of control,pager.
Either way, the kernel maintains the physical memory cache • reference count garbage collection of objects and
for each memory object and thus provides to a system server

• automatic object locking.the advantages of cached data management and explicit
paging normally available only within an operating system
kernel itself. 3. The Mach Kernelization of Unix

In addition, the virtual memory management subsystem in The use of Mach as a system software kernel is currently
the Mach kernel is designed to be largely independent of the being put to the test at Carnegie Mellon in the development of
hardware architecture of the machine it is operating on, a complete user-state implementation of Berkeley Unix
thereby simplifying the task of porting Mach to a large num- 4.3BSD [8]. The key components of the user-state
ber of different machines. Mach/Unix are:

• a transparent Unix implementation library which
supports all BSD system traps,

• a collection of generic (non-Unix specific) ser-

8. Joy, W., et. al. 4.2BSD System Manual. Technical report ,vers which handle authentication, name service,
Computer Systems Research Group, Computer Science Division,networking and message passing and
University of California, Berkeley, July, 1983.

• a few Unix specific servers to support the BSD 9. Rashid, R.F. and Robertson, G. Accent: A Communication
file system, process and communication model. Oriented Network Operating System Kernel. Proceedings of the 8th

Symposium on Operating System Principles, December, 1981, pp.An important aspect of this implementation is that many
64-75.Unix system calls, for example read and write, can be im-

plemented within the transparent Unix library with no mes- 10. Rashid, R.F., Tevanian, A., Young, M.W., Golub, D.B., Baron,
sages exchanged with servers. This is possible because many R.V., Black, D.L., Bolosky, W., and Chew, J.J. Machine-

Independent Virtual Memory Management for Paged UniprocessorUnix data objects can be represented as Mach memory objects
and Multiprocessor Architectures. Proceedings of the 2nd Sym-and mapped into the address space of the transparent library
posium on Architectural Support for Programming Languages and

after a Unix open call is made. read and write thus translate Operating Systems, ACM, October, 1987.
into simple memory references into this mapped area.

11. D.M. Ritchie and K. Thompson. "The UNIX time-sharing
system". Bell System Technical Journal (July 1978).

4. Current Status
12. Sansom, R.D., Julin, D.P. and Rashid R.F. Extending aAs of this writing (November 1988), all the kernel facilities
Capability Based System into a Network Environment. Proceedings

described in this paper were functional and in use at Carnegie of the ACM SIGCOMM 86 Symposium on Communications Ar-
Mellon. The out of kernel BSD implementation was nearly chitectures and Protocols, August, 86, pp. 265-274. Also available as

Technical Report CMU-CS-86-115.complete and a number of 4.3BSD binaries including the C
compiler, tools, editors, shells and socket-based programs 13. Wulf, W.A., Levin, R., and Harbison, S.P.. Hydra/C.mmp: An
such as ftp were functioning. It was expected that the out of Experimental Computer System. McGraw-Hill, 1981.
kernel BSD implementation would be complete at the time of
this conference.

The Mach operating system is currently being distributed
with full 4.3BSD binary compatibility (implemented in
kernel-state) by Carnegie Mellon University for the IBM RT-
PC, VAX and SUN 3 family of processors. In addition,
commercial versions of Mach are available from BBN Ad-
vanced Computers Inc., Evans and Sutherland Computer
Division, Encore Computers and NeXT. Mach has been
ported to a wide range of uniprocessors and multiprocessors
including the IBM RP3, Sequent Balance, Macintosh II, IBM
370 and the Intel 386.

References

1. Accetta, M.J., Baron, R.V., Bolosky, W., Golub, D.B., Rashid,
R.F., Tevanian, A., and Young, M.W. Mach: A New Kernel Foun-
dation for UNIX Development. Proceedings of Summer Usenix,
July, 1986.

2. Ball, J.E., J.A. Feldman, J.R. Low, R.F. Rashid, and P.D. Rovner.
"RIG, Rochester’s Intelligent Gateway: System overview.". IEEE
Trans. on Software Eng. 2, 4 (December 1976), 321-328.

3. D. R. Cheriton, M. A. Malcolm, L. S. Melen, and G. R. Sager.
"Thoth, a Portable Real-Time Operating System". Comm. ACM
(February 1979), 105-115.

4. D. R. Cheriton and W. Zwaenepoel. The Distributed V Kernel and
its Performance for Diskless Workstations. Proceedings of the 9th
Symposium on Operating System Principles, ACM, October, 1983,
pp. 128-139.

5. R.J. Creasy. "The Origin of the VM/370 Time-Sharing System".
IBM Journal of Research and Development 25(5) (September 1981),
483-490.

6. Jones, A.K. The Object Model: A Conceptual Tool for Struc-
turing Systems. In Operating Systems: An Advanced Course,
Springer-Verlag, 1978, pp. 7-16.

7. Jones, A.K., Chansler, R.J., Durham, I.E., Schwans, K., and
Vegdahl, S. StarOS, a Multiprocessor Operating System for the
Support of Task Forces. Proc. 7th Symposium on Operating Systems
Principles, ACM, December, 1979, pp. 117-129.

