

 1

 1

Virtual Machines

� CS418, Spring2006, 17-19 April 2006

 2

Contents

� What is a VM?

� Applications of VMs

� Classification of VM

� Implementation Issues

� Future Directions

� Virtual Machines vs Microkernels

� Not covered

 3

What is a machine?

� Machine is an implementation of some
exported interface.

� For example:

� Hardware

� Interface: ISA+Exceptions

� Operating System

� Interface: User-Mode ISA + System calls

� Programming Language

� Interface: Core Language constructs

 4

What is a Virtual Machine?

� Something that is not a machine? No

� It is a machine that provides an illusion of some
other machine

� Virtual Machine Monitor (VMM) provides the
same interface* as the other machine, and
simulates its implementation behavior

� Interesting part: It can do useful things between
the interface and the implementation that not
usually observable by the users (guests).

(*) in some cases, very similar interface with a little modifications

 2

 5

Types of Virtual Machines

� Kind 1: Full Machine Virtualization

� Type I: The VMM runs on bare hardware. All guest
operating systems run within the control of the VMM.

� Type II: The VMM runs as an ordinary application
inside some host operating system, but emulates a
machine that can run one or more OS-es within it.

� Kind 2: Paravirtualization

� Type III: The VMM runs on bare hardware, but does
not emulate it precisely. The guest OS-es that run on
this VMM must adapt to the new interface.

� Kind 3: Language Runtimes

� Ex: Java Virtual Machine (Not to be covered) 6

Normal Setup

Hardware -- �real machine�

Operating System

APP APP APP APP

 7

Hardware -- �real machine�

Virtual Machine Monitor (VMM)

Operating System

APP APP APP APP

Virtual machine Type I

Simulated Machine

Operating System

APP APP APP APP

Simulated Machine

 8

Motivation

� Machines are (or were) expensive

� Can run more than one OS

� Can �clone� a machine for backup

� Planning for fail-over

� Mass deployment (e.g. Web servers)

� Upgrade and software migration

� Machine Migration and Load balancing

 3

 9

Motivation II

� Emulating a different machine (e.g. for OS
bring-up or backwards compatibility)

� Providing a system-level debugging
environment

� Administration and logging

� Simulation and Experimentation

� Ex: simulating large networks.

� Strong Isolation between the guest Operating
systems.

 10

What Must Be Emulated?

� Instruction set (both user and supervisor)

� Exception handling interface

� Interrupt mechanism

� Some set of devices

� Basically, everything the OS would
normally see.

 11

IBM 360

� Provided Uniform Instruction set for a
wide range of machines

� Not all machines implemented the whole
ISA

� Low-end machines emulated some
instructions in the terms of others.

� (ex: multiplication through repeated addition)

 12

IBM 370

� Used to implement reliable multiplexing
of IBM�s mainframe computers

� Each task was run in its own Virtual
machine.

� Virtualizability was an explicit goal of the
architecture

� Virtualization was complete: one of the
things that could be run inside the
VM 370 is VM 370 itself.

 4

 13

Virtual Machines Type II

� The VMM runs as an ordinary application inside
some host operating system, but emulates a
machine that can run one or more OS-es within it.

� Ex: VMWare, QEMU, UML

 14

Hardware

Virtual Machine

Operating System 1

APP

APP APP APP

Virtual Machines Type II

OS 3OS 2

 15

Motivations

� Operating system development and debugging

� OS development without having to run on the native
machine (and damage it?)

� Can obtain a dump if the guest-OS crashes

� Can use the host operating system to control or debug
the guest operating system

� Simpler implementation, utilizes the facilities
and abstractions of the host OS of emulating
the machine.

 16

AMD SimNow

� Developed by VirtuTech for AMD

� Provides full system simulation for OS
bringup.

� Earliest �deployment� of AMD Pacifica,
NX, and other new features

� Lets supporting software be developed
early for hardware testing and faster
market deployment.

 5

 17

What does it take to
Vitrualize a system?

Hardware

VMM

OS - 1

APP APP APP APP

OS - 2

� For Full Machine Virtualization:

� CPU Virtualization

� Memory Virtualization

� Device (I/O) Virtualization

� Interrupt / Exception Virtualization

� Considerations:

� Transparency

� Performance

� Complexity 18

What is in the VMM ?

Hardware

Virtual machine Monitor

OS - 1

APP APP APP APP

OS - 2

M-State

OS's context Information
Register State
Privilege mode Information
Virtual Memory / Page Table

M-state 2

..

..

..

 19

Virtualizing the instruction set

� Consider the privileged instruction
 cli � clear interrupt flag

Hardware

Virtual machine Monitor

OS - 1

APP APP APP APP

OS - 2

 20

Staying in Control

Hardware -- �real machine�

Virtual machine

Operating System

APP APP APP APP

 Privileged
 (Supervisor mode)

execution

Virtually Privileged,
Really unprivileged

Unprivileged

 6

 21

Is this enough?

� G. J. Popek and R. P. Goldberg. Formal requirements for
virtualizable third generation architectures. In Proc. of the Fourth
Symposium on Operating System Principles, Yorktown Heights,
New York, Oct. 1973.

� Provide Sufficient Conditions for Vitrualizability.

 22

Definitions

� Privileged Instructions

� Sensitive Instructions

� Control Sensitive

� Behavior Sensitive

� Location Sensitive

� Mode Sensitive

� �Innocuous� Instructions

� Traps

 23

 Popek-Goldberg Theorems

� THEOREM 1: For any conventional third generation computer, a
virtual machine monitor may be constructed if the set of
sensitive instructions for that computer is a subset of the set of
privileged instructions.

� THEOREM 2: A conventional third generation computer is
"recursively virtualizable� if it is: (a) virtualizable, and (b) a VMM
without any timing dependencies can be constructed for it.

� THEOREM 3: A hybrid virtual machine monitor may be
constructed for any conventional third generation machine in
which the set of user sensitive instructions are a subset of the set
of privileged instructions.

 24

Case study - IA32

� Privileged Instructions

� CLI

� LGDT, LLDT, LIDT

� Load/store Control Regs

� IRET

� HLT

� RWMSR, WRMSR

� RDPMC

� LMSW

Robin, J. and Irvine, C. (2000). Analysis of the Intel Pentium' s ability to support a
secure virtual machine monitor. In Proceedings of the 9th USENIX Security
Symposium, Denver, Colorado, USA, August 14-17.

� Sensitive Instructions

� Pushf / Popf

� SGDT, SLDT, SIDT

� SMSW

� LAR, LSL, VERR, VERW

� Push / Pop Segment Regs

 7

 25

Case 1: Privileged Instructions

Hardware -- �real machine�

Virtual machine

Operating System

cli

Unprivileged

Trap

Note not to interrupt this OS

 26

The Difficult Case

� Flags on IA32

� Trying to set Privileged flags from user
mode silently fails

� User mode can read privileged flags

Res |I|V|V|A|V|R|0|N|IO|O|D|I|T|S|Z|0|A|0|P|1|C
 |D|I|I|C|M|F| |T|PL|F|F|F|F|F|F| |F| |F| |F
 | |P|F| | | | | | | | | | | | | | | | | |

31 22 12 0

 27

Solution

� Interpret guest-OS instructions

Hardware -- �real machine�

VMM

Operating System

APP APP APP APP
Unprivileged

Interpreter
+ Fixup

 28

Can do a little better

Guest OS
Instructions

Pushf

Interpreter
+

Fixup

Guest OS Instruction Cache

Trap to VM for Simulated Pushf

VMM

Fetch Guest OS
 Instrs

Emit
Translated
Instrs

Trap

1) Note that we entered because of Pushf
2) Fixup the Guest OS stack with
 Virtually correct value of flags
 from its M-state
3) Continue execution of Guest OS

Lives in OS address space, but protected from it.

 8

 29

MMU Virtualization

� Virtual Physical Memory

� Virtual Virtual Memory

� Transparency: VMM cannot occupy Virtual
Addresses

� Efficiency: MMU cannot be implemented in
software

� Solution: Shadow Paging

 30

Shadow Paging

 31

Memory resource Management

� Ballooning

� Guest VM is in the best position to decide
what is valuable to it

� Content based page sharing

� Hot I/O re-mapping

C. A. Waldspurger. Memory resource management in VMware ESX server.
In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, pages 181--194, December 2002.

 32

I/O Virtualization
� Problem: Lots of devices

� Vendor specific interfaces

� The VMM must support all devices, but can
export a uniform virtual device to all guest
operating systems.

� Need to intercept Bus probes so that one OS
does not take control of any device

� Isolation

� Need to protect each VM from interfering with the
other's use of the device

� Real time requirements

� Audio, video, Network

 9

 33

I/O Virtualization
� Performance Issues:

� Allow as much direct communication as possible.

� Copying data is expensive (Network)

� Disk Virtualization

� Every guest implements its own disk scheduling, which
may interfere with one another.

� Legacy devices

� Some PCI devices are very hard to virtualize

� Many BIOS calls Non-reentrant

� DMA

� This circumvents virtual memory

� Impossible to virtualize without HW support

 34

Implementation of Type II VMs

� VMM works by mapping guest OS
abstractions into HW abstractions

� Use host OS's process abstraction for each VM

� Use guest OS's context switching mechanism

� Use Ptrace like facility for controlling these VMs

� Use host Signals for virtual interrupts / exceptions

� Use host's Per-process address space mappings for
Virtual MMU

� Use host provided files and devices for virtual devices
where possible

� A large file to implement a virtual �disk�

� File read/write for virtual disk read/write

 35

I/O Virtualization in Type II VMs
J. Sugerman, G. Venkitachalam, and B.-H. Lim, "Virtualizing I/O devices on VMWare
workstation 's hosted virtual machine monitor," in Proceedings June 2001.

Figure adapted from the above paper.
Their copyright reads: Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

 36

Interrupt / Exception handling

This is not to be covered

 10

 37

Paravirtualization
� Trade 100% interface compatibility for

performance

� Fully compliant with ABI (Apps run unmodified)

� Guest OS-es must be modified to use VMM�s interface

� Guest OS-es are Virtualization aware

� Privileged instruction are replaced by
hypervisor calls

� These VMs assume Popek-Goldberg Theorem 1

� No need for interpretation / translation

� Ex: Xen, UML

 38

Xen and the Art of Virtualization
B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and
R. Neugebauer. Xen and the art of virtualization. In Proc. of the ACM SOSP Oct. 2003.

 39

More Paravirtualization

� Virtual time vs Real time

� Virtualizing time is not always possible, but the
Guest-OS can be made aware of this to cope with it

� Expose real resource availability

� Guest-OS can optimize behavior based on actual
information.

� Hypervisor occupies a fixed address

� Reduces complexity and redundant mappings

� MMU virtualization can be done without shadow
page tables

 40

More Paravirtualization

� Guest OS-es can be given protected access to
certain HW devices

� The Hypervisor can export a clean set of device
interfaces.

� PRE-VIRTUALIZATION

� Attempt to partially automate the process of
modifying the Guest-OS by utilizing the help
of the compiler tool chain

 11

 41

Xen Device Channels

 42

Sharing Device drivers

 43

Unmodified device-driver reuse
Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz, �Unmodified Device Driver Reuse and
Improved System Dependability via Virtual Machines,� In Proc. of the sixth Symposium on Operating
Systems Design and Implementation (OSDI '04), December 6-8, 2004, San Francisco, CA

 44

Hardware Support for Virtualization

� Problems with IA-32 (recap):

� Non-faulting sensitive instructions

� Ring levels stored in segment selector

� System state stored in EFLAGS

� Segment Descriptor caching

� TLB flushes due to Guest/VMM transitions

� Proposed solutions

� Intel VT

� AMD Pacifica

 12

 45

Intel Virtualization Technology(VT)

Traditional
Setup

Ring 0: Kernel

Ring 1: DD?

Ring 2: DD?

Ring 3: Apps

Ring 0: VMM

Ring 1

Ring2

Ring 3

Ring 0: Kernel

Ring 1: DD?

Ring 2: DD?

Ring 3: Apps

Ring 0: Kernel

Ring 1: DD?

Ring 2: DD?

Ring 3: Apps

VMX
Non-Root
Operation
For Guest
OS-es

VMX Root
Operation

Typically
for VMM

VMXON

VMSOFF
VM Entry

VM Exit

 46

What is added?

� VMX root operation mode, or �Ring -1�.

� VMCS � the VM control structure.

� 10 Instructions.

� Changes to the �normal� (VMX non-root)
mode operation for some instructions.

� VMM can specify what interrupts /
exceptions it wants notification.

� Shadows for control register reads.

� I/O virtualization support.

 47

VMCS structure
� Guest-state area

� Guest register state, Activity / Interruptibility state

� Host-state area

� Host register state

� VM execution control fields

� Determine of there must be a VM-exit for:

� Pin based Interrupts / NMIs

� Some instructions like HLT, INVLPG, RDPMC, read/write
Control regs, etc

� Exception bitmap

� I/O bitmap

 48

VMCS structure (cont)

� VM execution control fields (cont)

� Time-stamp counter offsets

� Guest/Host Masks and Read Shadows for CR0 / CR4

� VM-entry / VM-exit control fields

� MSR load options

� Event injection

� VM-exit information fields.

 13

 49

The Virtualization

Guest
Innocuous instrs

VMM

HW

Current VMCS

CPUID
Read CR3
VM instrs
R/W MSRs
INVD
...

HLT, IN/OUT, INVLPG
PAUSE, RDPMC, RDTSC
Write to CR3 ...

IVT

Interrupt
Exception

Read from CR0/4

 50

Language Run-times

Hardware

J V M (export HW independent interface)

Operating System 1

Native
APP

Java
APP

Java
APP

 51

IO Virtualization Support

� Desirable:

� Device emulation: Legacy / new interface

� Device assignment to VMs

� Device assisted sharing

� DMA remapping using IO page tables

� IO-TLB to speed up translation

� DMA isolation and VM protection

� Facilitates device assignment and VM relocation

 52

AMD Pacifica

� No extra rings

� VMM and guest run in different address spaces
(worlds)

� Support for fast world-switches

� Support for tagged TLBs

� Virtual Machines controlled through VMCBs

� Interrupt virtualization and Virtual interrupts

� Intercepts

� Instruction, Interrupt, exception, I/O

� IOMMU / GART + DEV checking

 14

 53

Security considerations
Intel LaGrande(*) and AMD64(#) architectures

� Secure startup(*#)

� Trusted Platform Module (TPM)

� Protected Input / Output(*)

� Encrypted Keyboard / mouse / USB input

� Protected pathway to frame-buffer

� Attestation(*)

� Secure storage of Keys(*)

� Security Exception(#)

� Redirect INITS to scrub sensitive information

