
Slab Allocator Project

Assigned: 9th February 2009, Due: 2rd March 2009

1 The Project

In this project you must implement the slab allocator as described in Jeff Bonwick’s paper [1].
Your implementation must conform to the interface specification givenslab.h (which is self ex-
planatory). Your result should be designed as a (static) library that implements the above interface.
Your implementation must keep the total internal fragmentation below 12.5%. The differences
with respect to Bonwick’s paper are:

1. The assignment is to implement anapplication level slab allocator (not a kernel memory
allocator). This allocator should obtain its storage usingthe mmap() system call, which
allocates a specified number ofpages.

2. Slab deletion is done whenever thekmem cache reap() call is made, not in response to
memory pressure. Usemunmap() to return the memory to the operating system.

3. You donot have to implement the self-scaling hash table alluded to in section 3.2.3 of the
paper [1] – this is surprisingly hard to do well. You can use a simple, unbalanced binary tree
implementation or borrow an existing AVL tree implementation (note that this data structure
must be able to handle delete operations).

At /home/slab on the machinecs418.cs.jhu.edu, you will find the following files:

1. slab.h – The interface specification.

2. slab-tester.c – A sample testing program. There are certain compile time switches
within the program. You can use them to control the degree of testing while dev elopement.

3. objects.def – Object definitions for the test program. Feel free to add other object
definitions in the same pattern for extended testing.

4. Makefile – the Makefile.

5. slab.c – a stub implementation file.

You must submit implementation files along with the updatedMakefile as a tarball.

1



2 Notes

1. You must not makeany changes to the header file.

2. You can obtain the correct value for PAGESIZE by including/usr/include/sys/user.h.

3. Your implementationmust not use malloc() ever.

4. Your implementation must not rely on the test program for anything.

5. You are strongly encouraged to keep the-Wall -Werror options to the C compiler. Most
warnings are genuine errors.

6. You are encouraged to study the test program as it serves asextended behavior specification.
You are also encouraged to start using it as early as possible.

7. Based on previous years’ experience, you arestrongly encouraged to use a configuration
management system (CVS, Subversion, and Mercurial are installed oncs418).

3 Grading

1. Grading will be based on

• Whether your allocator works correctly (without faults).

• Whether particular things that the allocator needs to do work correctly:

– Object Caching.

– Slab size selection – handling small/large/huge objects.

– Slab allocation and deallocation.

– Allocation and deallocation of backing store.

– Coloring.

• Code Quality.

• Correct implementation of the debugging interface.

2. A test-program is provided for your convenience. We reserve the right to run other test cases.

3. Your homework will be tested on thecs418 machine, and must therefore compile and run
on it.

4. Code that does not compile,#ifdefed /commented out code,etc. will receive no credit.

5. We will make a reasonable attempt to grade as much of your submission as possible, but
features that cannot be tested will receive no credit. For example: if your allocator segfaults
during cache creation, no further testing is possible, and you will receive no credit for all
other components as well.

2



4 Administrivia

1. In this project, you may work in teams of two.

2. The project is due on Monday, March 3rd. You are strongly encouragednot to delay on
starting this project!

3. You maynot make reference to any existing slab allocator implementation in the course of
this assignment.

Bibliography

[1] Jeff Bonwick, The slab allocator: An object-caching kernel memory allocator. In USENIX
Summer 1996 conference, pages 87–98, 1994.
[2] Jeff Bonwick and Jonathan Adams,Magazines and vmem: Extending the slab allocator to
many cpu’s and arbitrary resources. In Proc. 2001 USENIX Technical Conference, 2001.

3


