
Linux Kprobe Keyboard Logger

March 2, 2009

1 Assignment

The goal of this assignment is to build a Linux AT/PS2 scancode logging module. The module will use
the kprobe instrumentation mechanism to collect scancodes and export them using debugfs to be read by
a user application What the application does with the scancodes is outside the scope of the assignment.
Presumably it logs them to disk or may take some other action.

For this description, we will use the in-kernel data structure terms to avoid any confusion. The VFS
term translation is as follows:

• an inode is the file on disk

• a dentry is the naming structure for files or directories

• a file is an open file descriptor.

If you need assistance via email for this assignment, please follow good Bug Reporting Guidelines [3].
It is very difficult for us to offer remote assistance without enough information about what you are doing.
Requests for help not following these guidelines will receive only minimal responses.

2 Module

Your module will capture unprocessed AT and PS2 scancodes from the AT keyboard interrupt handler.
Scancodes must be stored in a ring-buffer large enough to hold exactly 16 scancodes. It will make these
scancodes available via a debugfs inode named by the dentry “atkbd/scancodes” from the debugfs root.
Multiple programs must be able to open this inode and obtain scancodes without interfering with each
other. Your module should not disrupt the stability of the kernel, and should therefore not allocate memory
for read requests.

This is largely an interfacing problem between kprobes and debugfs. For capturing scancodes, we will be
using the kprobes mechanism. You will need to find the appropriate instruction(s) to probe to capture the
scancodes. Interrupts are already disabled by the time interrupt handlers are invoked, so waiting on a mutex
will hang the kernel. This motivates building a preemptable transaction in your inode implementation.

You will export an inode with the following properties. When the inode is first opened, the file must
have available the most recently captured scancodes that are still live in the ring buffer. This is illustrated
in Figure 1. When a new scancode is captured, it is logically placed at the end of the file, as in Figure 2.
Figure 3 shows what happens when your buffer is full and a new scancode will evict an old one. In this case,
attempts to read an evicted scancode must result in reading bytes containing zeros. This allows applications
to detect missed scancodes.

At a minimum, you will need to implement the open, read, llseek, and release operations for your
debugfs inode, though some may be trivial. Each of these functions is documented by an analogous Unix
man page and in the Understanding the Linux Kernel book. Reads will need to implement a preemptable
transaction, as an interrupt could come at any time and update your ring buffer.

1

Valid Bytes

EOF

Bytes not yet captured

Figure 1: Freshly Opened File.

Valid Bytes

New Bytes

EOF

Bytes not yet captured

Figure 2: New Scancode.

2.1 Requirements

• Use the kprobes instrumentation mechanism. kprobe, jprobe, or kretprobe is acceptable.

• Buffer 16 scancodes in a ring buffer. You must overflow at this point, I don’t want to type all day
or run arbitrary qemu scripts. Note that this isn’t practical in a production implementation, so you
probably specify this as a macro.

• Export your buffer as an inode available through the dentry “atkbd/scancodes” within the root of
the debugfs filesystem.

• When an application opens the scancodes inode, the first (index: zero) byte of the newly opened file
should be the oldest byte remaining in ring buffer. Bytes which were not written by logging scancodes
should not appear here.

• When an application attempts to read a byte which is no longer in the buffer, that byte will be read
as a zero. (The zero scancode indicates a fatal keyboard error, and is a reasonable result. There are
better choices, but this is a bit more legible.)

• Applications do not evict bytes from the scancode buffer by reading them. This is not a producer-
consumer model.

• Any number of applications must be able to open the scancodes inode, obtaining different open files,
each with its own logical mapping. This should work for the same application opening the inode
multiple times.

• Applications must have a method of waiting for new scancodes to arrive and read them.

• Do not worry about shared open files. The Unix specification requires that applications sharing
open file descriptors manage their own synchronization. However, individual open files must operate
independently.

Evicted Bytes

Valid Bytes

New Bytes

EOF

Bytes not yet captured

Figure 3: Evicted Scancode.

2

• You must support 64-bit file offsets.

• Do not worry about overflowing 64-bit indexes. Assume that less than 260 characters will be typed
before reboot.

• You must allow applications to seek in the file.

• You must clean up any dynamic memory you have allocated at open, if any, during close.

• You may assume you are running on a single-processor system. You may implement an SMP mechanism
if so inclined.

• Do not add any overhead to a probed interrupt handler other than a constant-time algorithm.

• Do not worry about spurious keyboards. Assume that the keyboard and interrupt system are working
correctly.

• Do not over-engineer this problem. In particular, kernel top-half and bottom-half drivers are unnec-
essary and will not be graded.

3 Build Environment

3.1 On cs418

In the following descriptions, commands run on the host machine are run as some user, and use the “$”
prompt. Commands run on the guest are run as root, and therefore use the “#” prompt.

On CS418, copy the directory /home/kprobe/build to your home directory using:
$ cp -r /home/kprobe/build ∼/

Then give yourself read authority by typing
$ chmod -R u+w ∼/build

You may wish to commit this to a version control system at this point. We recommend mercurial
$ hg init && hg commit -m "initial import"

The file atkbd scancodes.c is a Linux kernel module skeleton which you can edit. To create the kernel
module, run make.

$ make

To run qemu with a file system using your modules drive, use:
$ make qemu-vnc

This will create a new qemu disk image for you to run, generate a modules disk image loaded with your
module and some test programs, and launch qemu. You will be given a series of commands for you to use
ssh to access qemu remotely using vnc. Once connected, the root password to the image is “kprobes” and
your kernel modules are installed in /mnt/modules. To install your kernel module in the guest system type:

insmod /mnt/modules/atkbd scancodes.ko

To remove it type:
rmmod atkbd scancodes

The /mnt/modules filesystem is generated on the host as modules.img. You can recreate this file without
relaunching qemu, but be sure to unmount /mnt/modules first. To rebuild only your modules drive, type:

$ make modules.img

We do NOT recommend reloading new kernel module versions without rebooting. Loading
a newer module version into a running system isn’t a problem. However, there is no guarantee that the old,
and by definition buggy, driver has not corrupted the system in some yet unnoticed way. In this case, it is
more likely that you will be simultaneously debugging two interfering modules instead of one.

Be very careful about using any networking on these systems, including SSH, as all virtual

machines share private keys. If you must load new modules into your running system, we would prefer
that you do not use SSH. Instead, please unmount /mnt/modules, rebuild the modules image, and mount

/mnt/modules. Your new modules drive will be available now.

3

Do not leave any important files in the qemu guest system. Any changes to the qemu system
will be removed when performing a make clean or make distclean. Your modules image will be recreated
whenever running qemu. If you want to have files available in the guest, place them into the my-modules

directory. The default modules filesystem is about 80MB and should have plenty of room for anything.
Two applications have been provided for your use. These are the applications we will use to test

your module. The reader application is nearly identical to tail -f, insofar as it sequentially reads bytes
from a file and pumps them to stdout. However, it ignores the reported file length and does not attempt to
manage truncated files. It can be used in place of a scancode logging program. If no file is specified it uses
stdin.

The tester program is identical to the reader, except it outputs human readable messages instead of raw
bytes. Additionally, it waits for a character from stdin before reading from the file. Each call to read will
report how many bytes were read followed by reports of each byte in character, hexadecimal, and decimal
formats. It requires a file and does not fall back to stdin.

3.2 On your own PC

Simply copy the /home/kprobe directory to another computer. You will need to specify the full path of the
local kprobe directory in the Makefile by changing the KPROBE HOME variable. You will need approximately
11 Gb of storage and Linux running on x86. We will not support cross compiles. You will need qemu and
most of the available Linux development tool chain.

You may run qemu locally without vnc by using the command:
$ make qemu

REMEMBER TO TEST YOUR FINAL SUBMISSION ON CS418. All submissions will be
graded on cs418 and must compile and install to receive credit.

4 Hints

You will need to probe some instruction from drivers/input/keyboard/atkbd.c.
Since you are instrumenting an interrupt handler, you will not be able to use any mutex when writing

to your buffer. You will need to implement a transaction. We recommend keeping a counter for the total
number of captured scancodes. Before the kernel responds to a read request, it will copy this counter to a
declared volatile location. It then performs the string copy, and when finished, checks to see if the counter
has changed mid-copy. If so, it simply re-executes the entire transaction before returning control to the
process. During a write to the buffer, increment the counter. Since interrupts are disabled, writes happen
during a critical section on a uniprocessor.

To get this to work for SMP, you would need to keep a transaction boolean that indicates you are
changing data. This is easily implemented by using the least significant bit of the counter, and atomically
incrementing it twice: once before writing, and once after. A thread reading will be able to tell whether the
buffer has changed, or is changing, and rollback the write transaction. The only difference in read logic is
to mask the least significant bit after reading the counter. Spinlocks aren’t strictly constant-time. However,
we will argue that these events happen infrequently, so in general, we won’t see any queuing or starvation.

Why don’t reading threads starve? Keyboard controllers have a minimum repeat rate of 250 ms, and in
general humans can’t type faster than 600 characters per minute. A character every 100 ms is incredibly fast
for a human input, and it’s difficult to sustain. Remember that scancodes produce a down code and an up
code, so there will be at least two codes for every character, but we now have a worst-case average of 50ms
between events. Memory operates at speeds in tens of ns, fast enough to read many scancodes between key
events. To calibrate, your average programs run in time slices in this range. Of course, this assumes that
escape code sequences fit into this 50 ms boundary, or don’t overflow the buffer entirely. Provided that we
make the buffer large enough to amortize the reading cost over escape sequences, we will be fine.

This assignment will not require much written code, but will be heavy in development and reading. You
will need to read the VFS chapter of Understanding the Linux Kernel. You will want to read a bit about
using debugfs [5] [1] and you may want to lookup an AT keyboard scancode chart [4] to debug your output.
You can learn more about kprobes by reading the Linux documentation [2].

4

References

[1] http://cs418.cs.jhu.edu:8080/source/xref/include/linux/debugfs.h.

[2] Kprobes documentation. http://cs418.cs.jhu.edu:8080/source/xref/Documentation/kprobes.txt.

[3] Mozilla bug writing guidelines. http://developer.mozilla.org/en/docs/Bug_writing_guidelines.

[4] Scan codes demystified. http://www.quadibloc.com/comp/scan.htm.

[5] Debugfs. http://lwn.net/Articles/115405/, December 2004.

5

http://cs418.cs.jhu.edu:8080/source/xref/include/linux/debugfs.h
http://cs418.cs.jhu.edu:8080/source/xref/Documentation/kprobes.txt
http://developer.mozilla.org/en/docs/Bug_writing_guidelines
http://www.quadibloc.com/comp/scan.htm
http://lwn.net/Articles/115405/

	Assignment
	Module
	Requirements

	Build Environment
	On cs418
	On your own PC

	Hints

